あなたは歯科・医療関係者ですか?

WHITE CROSSは、歯科・医療現場で働く方を対象に、良質な歯科医療情報の提供を目的とした会員制サイトです。

日本語AIでPubMedを検索

日本語AIでPubMedを検索

PubMedの提供する医学論文データベースを日本語で検索できます。AI(Deep Learning)を活用した機械翻訳エンジンにより、精度高く日本語へ翻訳された論文をご参照いただけます。
Mol. Biotechnol..2020 Jul;10.1007/s12033-020-00262-y. doi: 10.1007/s12033-020-00262-y.Epub 2020-07-14.

従来および手作りのクローニング技術と体外および生体内で成熟した卵子を用いて生産されたクローン化されたドロメダリーラクダの妊娠率および分娩率

Pregnancy and Calving Rates of Cloned Dromedary Camels Produced by Conventional and Handmade Cloning Techniques and In Vitro and In Vivo Matured Oocytes.

  • F Moulavi
  • B Asadi-Moghadam
  • M Omidi
  • M Yarmohammadi
  • M Ozegovic
  • A Rastegar
  • S M Hosseini
PMID: 32666261 DOI: 10.1007/s12033-020-00262-y.

抄録

Despite practical implication of cloning in camelids, its broad application has been hampered by technical and biological problems. Method of somatic cell nuclear transfer (SCNT) and oocyte competence are the principal technical and biological factors, respectively, that determine the cloning efficiency. This study, therefore, investigated differential contributions of two SCNT methods [modified handmade cloning (mHMC) vs. conventional (cNT)] and two recipient oocyte sources [abattoir-derived (Vitro) vs. FSH-stimulated (Vivo)] on the efficiency of dromedary camel cloning. The mHMC method supported similar rates of fusion, cleavage, and total blastocyst development, compared to conventional NT (cNT) (94, 89.1, and 68.5% vs. 78.9, 92, and 73.5%, respectively) when Vivo oocytes are used. However, using Vitro oocytes, mHMC supported significantly higher rates for these criteria, except for the cleavage, compared to cNT (95.5, 76.2, 25.2% vs. 75.3, 76.7, and 13.9%, respectively). A total of seven clones were born from mHMC/Vitro (four calves), mHMC/Vivo (one calf), cNT/Vitro (one calf), and mHMC/Vivo&Vivo (one calf)-derived embryos with overall efficiencies of 31.9, 26.6, 20, and 30% for initial pregnancy, 10.6, 6.6, 7.5, and 5% for development to term, and 8.5, 6.6, 2.5, 5% for development to weaving, respectively. To conclude, the quality of recipient oocyte greatly impacts cloning efficiency in vitro with no apparent carrying over effect on cloning efficiency in vivo, but the efficiency of SCNT method may compensate for the initial poor oocyte competence during in vitro and in vivo development of cloned embryos. The introduced mHMC could be a superior alternative to conventional method for simple, fast, and efficient production of cloned offspring in camelids.